$$\begin{align}\dot{x}_{0}&=x_{2}\\\dot{x}_{1}&=x_{3}\\\dot{x}_{2}&=\frac{9.81 \cdot par_{0} \cdot \sin {x_{0}} - 1.0 \cdot par_{1} \cdot x_{2}^{2} \cdot \sin {x_{1}} \cdot \cos {x_{1}} - 1.0 \cdot par_{1} \cdot x_{2}^{2} \cdot \sin {x_{1}} - 2.0 \cdot par_{1} \cdot x_{2} \cdot x_{3} \cdot \sin {x_{1}} - 1.0 \cdot par_{1} \cdot x_{3}^{2} \cdot \sin {x_{1}} - 9.81 \cdot par_{1} \cdot \sin {x_{0}} \cdot \cos^{2} {x_{1}} + 9.81 \cdot par_{1} \cdot \sin {x_{0}} - 9.81 \cdot par_{1} \cdot \sin {x_{1}} \cdot \cos {x_{0}} \cdot \cos {x_{1}}}{- 1.0 \cdot par_{0} + par_{1} \cdot \cos^{2} {x_{1}} - 1.0 \cdot par_{1}}\\\dot{x}_{3}&=\frac{1.0 \cdot par_{0} \cdot x_{2}^{2} \cdot \sin {x_{1}} - 9.81 \cdot par_{0} \cdot \sin {x_{0}} + 9.81 \cdot par_{0} \cdot \sin {x_{1}} \cdot \cos {x_{0}} + 2.0 \cdot par_{1} \cdot x_{2}^{2} \cdot \sin {x_{1}} \cdot \cos {x_{1}} + 2.0 \cdot par_{1} \cdot x_{2}^{2} \cdot \sin {x_{1}} + 2.0 \cdot par_{1} \cdot x_{2} \cdot x_{3} \cdot \sin {x_{1}} \cdot \cos {x_{1}} + 2.0 \cdot par_{1} \cdot x_{2} \cdot x_{3} \cdot \sin {x_{1}} + 1.0 \cdot par_{1} \cdot x_{3}^{2} \cdot \sin {x_{1}} \cdot \cos {x_{1}} + 1.0 \cdot par_{1} \cdot x_{3}^{2} \cdot \sin {x_{1}} + 9.81 \cdot par_{1} \cdot \sin {x_{0}} \cdot \cos^{2} {x_{1}} - 9.81 \cdot par_{1} \cdot \sin {x_{0}} + 9.81 \cdot par_{1} \cdot \sin {x_{1}} \cdot \cos {x_{0}} \cdot \cos {x_{1}} + 9.81 \cdot par_{1} \cdot \sin {x_{1}} \cdot \cos {x_{0}}}{- 1.0 \cdot par_{0} + par_{1} \cdot \cos^{2} {x_{1}} - 1.0 \cdot par_{1}}\end{align}$$